Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(2): 262-270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123813

RESUMO

Porous metal-organic frameworks have emerged to resolve important challenges of our modern society, such as CO2 sequestration. Zeolitic imidazolate frameworks (ZIFs) can undergo a glass transition to form ZIF glasses; they combine the liquid handling of classical glasses with the tremendous potential for gas separation applications of ZIFs. Using millimetre-sized ZIF-62 single crystals and centimetre-sized ZIF-62 glass, we demonstrate the scalability and processability of our materials. Further, following the evolution of gas penetration into ZIF crystals and ZIF glasses by infrared microimaging techniques, we determine the diffusion coefficients and changes to the pore architecture on the ångström scale. The evolution of the material on melting and processing is observed in situ on different length scales by using a microscope-coupled heating stage and analysed microstructurally by transmission electron microscopy. Pore collapse during glass processing is further tracked by changes in the volume and density of the glasses. Mass spectrometry was utilized to investigate the crystal-to-glass transition and thermal-processing ability. The controllable tuning of the pore diameter in ZIF glass may enable liquid-processable ZIF glass membranes for challenging gas separations.

2.
Light Sci Appl ; 12(1): 293, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057309

RESUMO

Silicate glasses with metallic nanoparticles (NPs) have been of intense interest in art, science and technology as the plasmonic properties of these NPs equip glass with light modulation capability. The so-called striking technique has enabled precise control of the in situ formation of metallic NPs in silicate glasses for applications from coloured glasses to photonic devices. Since tellurite glasses exhibit the unique combination of comparably easy fabrication, low phonon energy, wide transmission window and high solubility of luminescent rare earth ions, there has been a significant amount of work over the past two decades to adapt the striking technique to form gold or silver NPs in tellurite glasses. Despite this effort, the striking technique has remained insufficient for tellurite glasses to form metal NPs suitable for photonic applications. Here, we first uncover the challenges of the traditional striking technique to create gold NPs in tellurite glass. Then, we demonstrate precise control of the size and concentration of gold NPs in tellurite glass by developing new approaches to both steps of the striking technique: a controlled gold crucible corrosion technique to incorporate gold ions in tellurite glass and a glass powder reheating technique to subsequently transform the gold ions to gold NPs. Using the Mie theory, the size, size distribution and concentration of the gold NPs formed in tellurite glass are determined from the plasmonic properties of the NPs. This fundamental research provides guidance for designing and manipulating the plasmonic properties in tellurite glass for photonics research and applications.

3.
Chem Sci ; 14(42): 11737-11748, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920351

RESUMO

Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.

4.
J Am Chem Soc ; 145(42): 22913-22924, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819708

RESUMO

The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.

5.
Adv Sci (Weinh) ; 10(21): e2301435, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150850

RESUMO

Understanding the multivariate origin of physical properties is particularly complex for polyionic glasses. As a concept, the term genome has been used to describe the entirety of structure-property relations in solid materials, based on functional genes acting as descriptors for a particular property, for example, for input in regression analysis or other machine-learning tools. Here, the genes of ionic conductivity in polyionic sodium-conducting glasses are presented as fictive chemical entities with a characteristic stoichiometry, derived from strong linear component analysis (SLCA) of a uniquely consistent dataset. SLCA is based on a twofold optimization problem that maximizes the quality of linear regression between a property (here: ionic conductivity) and champion candidates from all possible combinations of elements. Family trees and matrix rotation analysis are subsequently used to filter for essential elemental combinations, and from their characteristic mean composition, the essential genes. These genes reveal the intrinsic relationships within the multivariate input data. While they do not require a structural representation in real space, how possible structural interpretations agree with intuitive understanding of structural entities known from spectroscopic experiments is finally demonstrated.

6.
ACS Nano ; 17(6): 6121-6130, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36877629

RESUMO

Fabrication of metal-organic framework (MOF) thin films rigidly anchored on suitable substrates is a crucial prerequisite for the integration of these porous hybrid materials into electronic and optical devices. Thus, far, the structural variety for MOF thin films available through layer-by-layer deposition was limited, as the preparation of those surface-anchored metal-organic frameworks (SURMOFs) has several requirements: mild conditions, low temperatures, day-long reaction times, and nonaggressive solvents. We herein present a fast method for the preparation of the MIL SURMOF on Au-surfaces under rather harsh conditions: Using a dynamic layer-by-layer synthesis for MIL-68(In), thin films of adjustable thickness between 50 and 2000 nm could be deposited within only 60 min. The MIL-68(In) thin film growth was monitored in situ using a quartz crystal microbalance. In-plane X-ray diffraction revealed oriented MIL-68(In) growth with the pore-channels of this interesting MOF aligned parallel to the support. Scanning electron microscopy data demonstrated an extraordinarily low roughness of the MIL-68(In) thin films. Mechanical properties and lateral homogeneity of the layer were probed through nanoindentation. These thin films showed extremely high optical quality. By applying a poly(methyl methacrylate) layer and further depositing an Au-mirror to the top, a MOF optical cavity was fabricated that can be used as a Fabry-Perot interferometer. The MIL-68(In)-based cavity showed a series of sharp resonances in the ultraviolet-visible regime. Changes in the refractive index of MIL-68(In) caused by exposure to volatile compounds led to pronounced position shifts of the resonances. Thus, these cavities are well suited to be used as optical read-out sensors.

7.
Nanoscale ; 14(44): 16524-16535, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36285652

RESUMO

Characterization of nanoscale changes in the atomic structure of amorphous materials is a profound challenge. Established X-ray and neutron total scattering methods typically provide sufficient signal quality only over macroscopic volumes. Pair distribution function analysis using electron scattering (ePDF) in the scanning transmission electron microscope (STEM) has emerged as a method of probing nanovolumes of these materials, but inorganic glasses as well as metal-organic frameworks (MOFs) and many other materials containing organic components are characteristically prone to irreversible changes after limited electron beam exposures. This beam sensitivity requires 'low-dose' data acquisition to probe inorganic glasses, amorphous and glassy MOFs, and MOF composites. Here, we use STEM-ePDF applied at low electron fluences (10 e- Å-2) combined with unsupervised machine learning methods to map changes in the short-range order with ca. 5 nm spatial resolution in a composite material consisting of a zeolitic imidazolate framework glass agZIF-62 and a 0.67([Na2O]0.9[P2O5])-0.33([AlO3/2][AlF3]1.5) inorganic glass. STEM-ePDF enables separation of MOF and inorganic glass domains from atomic structure differences alone, showing abrupt changes in atomic structure at interfaces with interatomic correlation distances seen in X-ray PDF preserved at the nanoscale. These findings underline that the average bulk amorphous structure is retained at the nanoscale in the growing family of MOF glasses and composites, a previously untested assumption in PDF analyses crucial for future non-crystalline nanostructure engineering.

8.
Adv Sci (Weinh) ; 9(23): e2201631, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35712779

RESUMO

Ultrasound-induced mechanoluminescence (USML) of Erbium-doped CaZnOS is reported. Using the fluorescence intensity ratio of the 2 H11/2 , 4 S3/2 → 4 I15/2 transitions of Er3+ allows for simultaneous temperature mapping at an absolute sensitivity of 0.003 K-1 in the physiological regime. The combination of USML, local heating, and remote read-out enables a feedback and response loop for highly controlled stimulation. It is found that ML is a result of direct energy transfer from the host material to Er3+ , giving room for adapted spectral characteristics through bandgap modulation. ML saturation at high acoustic power enables independent control of local light emission and ultrasonic heating. Such USML materials may have profound implications for optogenetics, photodynamic therapy and other areas requiring local illumination, heating, and thermometry simultaneously.


Assuntos
Termometria , Acústica , Érbio , Ultrassonografia
9.
Chemistry ; 28(38): e202200345, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35416352

RESUMO

Here, we propose the combination of glassy or crystalline metal-organic frameworks (MOFs) with inorganic glasses to create novel hybrid composites and blends.The motivation behind this new composite approach is to improve the processability issues and mechanical performance of MOFs, whilst maintaining their ubiquitous properties. Herein, the precepts of successful composite formation and pairing of MOF and glass MOFs with inorganic glasses are presented. Focus is also given to the synthetic routes to such materials and the challenges anticipated in both their production and characterisation. Depending on their chemical nature, materials are classified as crystalline MOF-glass composites and blends. Additionally, the potential properties and applications of these two classes of materials are considered, the key aim being the retention of beneficial properties of both components, whilst circumventing their respective drawbacks.

10.
Nanomaterials (Basel) ; 12(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35159873

RESUMO

We report on the fabrication and characterization of homogeneous, monophasic sodium metaphosphate and polyethylene glycol hybrid composites achieved via coacervation in aqueous solution. After separation and drying, an amorphous plastic solid is formed, composed mostly of hydrated sodium phosphate moieties amalgamated with polyethylene glycol chains. These composites are largely X-ray amorphous and can contain up to 8 weight percent of polymer. Impedance spectroscopic measurements reveal DC conductivity values of 12 µS/m at room temperature, an enhancement of three orders of magnitude when compared to glassy sodium metaphosphate, and the presence of the polyethylene glycol is reflected in the equivalent circuit and ionic hopping analyses.

11.
Adv Mater ; 34(14): e2109029, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34870862

RESUMO

Glasses are materials that lack a crystalline microstructure and long-range atomic order. Instead, they feature heterogeneity and disorder on superstructural scales, which have profound consequences for their elastic response, material strength, fracture toughness, and the characteristics of dynamic fracture. These structure-property relations present a rich field of study in fundamental glass physics and are also becoming increasingly important in the design of modern materials with improved mechanical performance. A first step in this direction involves glass-like materials that retain optical transparency and the haptics of classical glass products, while overcoming the limitations of brittleness. Among these, novel types of oxide glasses, hybrid glasses, phase-separated glasses, and bioinspired glass-polymer composites hold significant promise. Such materials are designed from the bottom-up, building on structure-property relations, modeling of stresses and strains at relevant length scales, and machine learning predictions. Their fabrication requires a more scientifically driven approach to materials design and processing, building on the physics of structural disorder and its consequences for structural rearrangements, defect initiation, and dynamic fracture in response to mechanical load. In this article, a perspective is provided on this highly interdisciplinary field of research in terms of its most recent challenges and opportunities.


Assuntos
Vidro , Óxidos , Vidro/química , Teste de Materiais
12.
Sci Rep ; 11(1): 24454, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961778

RESUMO

We report the effect of structural compaction on the statistics of elastic disorder in a silicate glass, using heterogeneous elasticity theory with the coherent potential approximation (HET-CPA) and a log-normal distribution of the spatial fluctuations of the shear modulus. The object of our study, a soda lime magnesia silicate glass, is compacted by hot-compression up to 2 GPa (corresponding to a permanent densification of ~ 5%). Using THz vibrational spectroscopic data and bulk mechanical properties as inputs, HET-CPA evaluates the degree of disorder in terms of the length-scale of elastic fluctuations and the non-affine part of the shear modulus. Permanent densification decreases the extent of non-affine elasticity, resulting in a more homogeneous distribution of strain energy, while also decreasing the correlation length of elastic heterogeneity. Complementary 29Si magic angle spinning NMR spectroscopic data provide a short-range rationale for the effect of compression on glass structure in terms of a narrowing of the Si-O-Si bond-angle and the Si-Si distance.

13.
ACS Omega ; 6(44): 30093-30107, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778681

RESUMO

Understanding the interactions among dopant species and the role of the host lattice is of fundamental importance for the chemical formulation of optically active glasses. Here, we consider the archetypal dopant pair of Ag-Ce in complex fluorophosphate (PF) and sulfophosphate (PS) matrices, in which variable bonding environments and ligand selectivity exert distinct effects on dopant properties. The addition of Ag+ to PF glasses blue-shifts the ultraviolet (UV) cutoff wavelength of Ce3+ and enhances its photoluminescence (PL) intensity. In PS matrices, the exact opposite effect is observed: red-shifting the UV cutoff and lowering the PL intensity. No Ag-Ag pairs or cluster species were found in either matrix material; however, in PS, such clustering could be triggered by secondary broad-band UV-visible irradiation. The optical properties of Ag-Ce-codoped glasses are a result of the ionocovalent character of the Ag+-O-Ce3+ bond, the cross-relaxation process between Ag+ and Ce3+, and the redox ratio of Ce3+/Ce4+. In the PF glasses, the enhancement of the Ce3+ PL intensity is due to energy transfer from Ag+ to Ce3+ and a redox shift from Ce4+ to Ce3+. The more covalent Ag+-O-Ce3+ interactions in the PS series decrease the Ce3+/Ce4+ ratio. Moreover, photoinduced Ag clustering is facilitated in the more covalent environment, which indicates that glasses commonly used for Ag nanoparticle formation, such as silicate glasses, also possess more covalent Ag+-O bonding.

14.
Nat Commun ; 12(1): 5703, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588462

RESUMO

Hybrid glasses from melt-quenched metal-organic frameworks (MOFs) have been emerging as a new class of materials, which combine the functional properties of crystalline MOFs with the processability of glasses. However, only a handful of the crystalline MOFs are meltable. Porosity and metal-linker interaction strength have both been identified as crucial parameters in the trade-off between thermal decomposition of the organic linker and, more desirably, melting. For example, the inability of the prototypical zeolitic imidazolate framework (ZIF) ZIF-8 to melt, is ascribed to the instability of the organic linker upon dissociation from the metal center. Here, we demonstrate that the incorporation of an ionic liquid (IL) into the porous interior of ZIF-8 provides a means to reduce its melting temperature to below its thermal decomposition temperature. Our structural studies show that the prevention of decomposition, and successful melting, is due to the IL interactions stabilizing the rapidly dissociating ZIF-8 linkers upon heating. This understanding may act as a general guide for extending the range of meltable MOF materials and, hence, the chemical and structural variety of MOF-derived glasses.

15.
Polymers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069828

RESUMO

A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate-co-spiropyran acrylate) (P (TEGA-co-SPA)) copolymer containing 12-14% of spiropyran at the silica-water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA-co-SPA)-rich wetting layer growing on the sensor, from which we deduced the characteristic coil-to-globule transition temperature, corresponding to the lower critical solution temperature (LCST) of the PTEGA part. We show that the coil-to-globule transition of the adsorbed copolymer being exposed to visible or UV light shifts to lower LCST as compared to the bulk solution: the transition temperature determined acoustically on the surface is 4 to 8 K lower than the cloud point temperature reported by UV/VIS spectroscopy in aqueous solution. We attribute our findings to non-equilibrium effects caused by confinement of the copolymer chains on the surface. Thermal stimuli and light can be used to manipulate the film formation process and the film's conformational state, which affects its subsequent response behavior.

16.
Opt Lett ; 46(8): 1816-1819, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857077

RESUMO

Fiber gratings are among key components in fiber-based photonics systems and, particularly, laser cavities. In the latter, they can play multiple roles, such as those of mirrors, polarizers, filters, or dispersion compensators. In this Letter, we present the inscription of highly reflective first-order fiber Bragg gratings (FBGs) in soft indium fluoride-based (InF3) fibers using a two-beam phase-mask interferometer and a femtosecond laser. We demonstrate an enhanced response of InF3-based fiber to a visible (400 nm) inscription wavelength compared to ultraviolet irradiation at 266 nm. In this way, FBGs with a reflectivity >99.7% were inscribed at around 1.9 µm with the bandwidth of 2.68 nm. After thermal annealing at 393K, the Bragg wavelength demonstrates stable thermal shift of 20 pm/K in the temperature range 293-373K. These observations suggest a potential extension of InF3 fiber-based laser components to an operational range of up to 5 µm.

17.
Dalton Trans ; 50(10): 3529-3535, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33599672

RESUMO

The thermal behaviour of ZIF-8, Zn(meIm)2 in the presence of a sodium fluoroaluminophosphate glass melt was probed through differential scanning calorimetry and thermogravimetric analysis. The structural integrity of ZIF-8 was then determined by a combination of powder X-ray diffraction, Fourier transform infra-red and 1H nuclear magnetic resonance spectroscopy.

18.
J Phys Chem B ; 125(2): 637-656, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33428848

RESUMO

Given the ubiquity of glass formulations that are functionalized with silver compounds, the electronic interaction between isolated silver cations and the glass network deserves more attention. Here, we report the structural origin of the optical properties that result from silver doping in fluorophosphate (PF) and sulfophosphate (PS) glasses. To achieve this, solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) are combined with optical spectroscopic analysis and physical property measurements. Comparing the 31P NMR, 27Al 1d NMR, and 27Al multi-quantum magic-angle spinning NMR of doped glasses and glasses with large amounts of Ag+ added, we deduce silver's bonding preference in these mixed-anion aluminophosphate glasses. We show that such understanding provides an explanation for the large Stokes shift observed for Ag+ in PF and PS glasses, which is related to absorption by the ionic Ag+···-O-P species and transfer of the excitation energy within more covalently bonded Ag2O-like clusters. This is corroborated by DFT calculations, which show that the Ag+···-O-P and Ag+···-O-S bonds in corresponding crystals are mostly ionic. The introduction of more silver ions into the crystal structure results in more covalent bonding between Ag+ and the phosphate matrix.

19.
J Chem Phys ; 153(20): 204501, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33261469

RESUMO

Metal-organic framework (MOF) glasses have emerged as a new class of melt-quenched glasses; however, so far, all MOF glass production has remained at lab-scale; future applications will require large-scale, commercial production of parent crystalline MOFs. Yet, control of synthetic parameters, such as uniform temperature and mixing, can be challenging, particularly, when scaling-up production of a mixed-linker MOF or a zeolitic imidazolate framework (ZIF). Here, we examine the effect of heterogeneous linker distribution on the thermal properties and melting behavior of ZIF-62. X-ray diffraction (XRD), Raman, and 1H nuclear magnetic resonance spectroscopies revealed little discernable structural difference between samples of ZIF-62 synthesized in our lab and by a commercial supplier. Differential scanning calorimetry and variable temperature/isothermal XRD revealed the samples to have significantly different thermal behavior. Formation of ZIF-zni was identified, which contributed to a dramatic rise in the melting point by around 100 K and also led to the alteration of the macroscopic properties of the final glass. Parameters that might lead to the formation of unexpected phases such as an uneven distribution of linkers were identified, and characterization methods for the detection of unwanted phases are provided. Finally, the need for adequate consideration of linker distribution is stressed when characterizing mixed-linker ZIFs.

20.
Nat Commun ; 11(1): 5800, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199681

RESUMO

Metal-organic framework (MOF) glasses have become a subject of interest as a distinct category of melt quenched glass, and have potential applications in areas such as ion transport and sensing. In this paper we show how MOF glasses can be combined with inorganic glasses in order to fabricate a new family of materials composed of both MOF and inorganic glass domains. We use an array of experimental techniques to propose the bonding between inorganic and MOF domains, and show that the composites produced are more mechanically pliant than the inorganic glass itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...